Skip to Content
Getting StartedQuickstart

Quickstart

Get started with Avala by creating your first annotation project.

Prerequisites

  • An Avala account (sign up )
  • Images or data to annotate (or use sample data)

Step 1: Create a Dataset

  1. Log in to Mission Control 
  2. Click Datasets in the left sidebar
  3. Click Add Dataset
  4. Enter a name and description
  5. Choose visibility (public or private)

Step 2: Upload Data

After creating your dataset:

  1. Click Add Items or drag files into the upload area
  2. Supported formats:
    • Images: JPEG, PNG, WebP
    • Videos: MP4, MOV (converted to frame sequences)
    • Point clouds: PCD, PLY, or via MCAP
  3. Wait for processing to complete

Large uploads are processed in the background. You’ll see a progress indicator and can continue working.

Step 3: Create a Project

Projects define your annotation workflow:

  1. Navigate to ProjectsAdd Project
  2. Select your dataset
  3. Choose annotation type:
    • Bounding Box: 2D object detection
    • Polygon: Instance segmentation
    • Cuboid: 3D object detection (for point clouds)
    • Segmentation: Semantic segmentation
  4. Define your label taxonomy (object classes)
  5. Configure quality control settings

Step 4: Annotate Data

Open an item to start annotating:

  1. Go to your dataset → Items
  2. Click on an item to open the annotation editor
  3. Use the toolbar to select annotation tools:
    • Box tool: Click and drag to draw bounding boxes
    • Polygon tool: Click to add vertices, close the shape
    • Select tool: Click annotations to edit or delete
  4. Assign labels from your taxonomy
  5. Click Save to submit your annotation

Keyboard Shortcuts

ShortcutAction
BBox tool
PPolygon tool
VSelect tool
DeleteDelete selected
Ctrl+SSave
/ Previous/Next item

Step 5: Review Annotations

Quality control ensures annotation accuracy:

  1. Navigate to Projects → your project → Review
  2. Review pending annotations
  3. Accept correct annotations
  4. Reject and provide feedback for corrections
  5. Track quality metrics in the dashboard

Step 6: Export Results

Export your labeled data:

  1. Go to ExportsCreate Export
  2. Select your project or dataset
  3. Choose export format:
    • COCO JSON: Standard object detection format
    • KITTI: Autonomous driving format
    • Avala Format: Native format with full metadata
  4. Download when ready

Using the API

You can also work programmatically:

import requests API_KEY = "your-api-key" BASE_URL = "https://api.avala.ai/api/v1" headers = {"X-Avala-Api-Key": API_KEY} # List your datasets response = requests.get(f"{BASE_URL}/datasets/", headers=headers) datasets = response.json() for dataset in datasets["results"]: print(f"{dataset['uid']}: {dataset['name']}")

Next Steps

Last updated on